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Abstract. This paper gives a simplified model of the double exchange which is a kind of indirect exchange
interaction between localized magnetic moments. The presented model is solved exactly in the case of infi-
nite – dimensional space. Equations for single-particle Green’s function and magnetization of the localized
spins subsystem are obtained. It is shown that our simple double exchange model reveals an instability to
the ferromagnetic ordering of localized moments. Magnetic and electric properties of this system on Bethe
lattice with z =∞ are investigated in detail.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 68.35.Rh Phase transitions and
critical phenomena – 72.10.-d Theory of electronic transport; scatering mechanisms

1 Introduction

The double exchange is one of the forms of indirect ex-
change interaction between localized magnetic moments
via itinerant electrons [1–6]. Historically it arose in con-
nection with experimental study of magnetic perovskites
La1−xMx MnO3, where M = Ca,Sr,Ba,Cd [7], and with
the ascertainment of the close connection between electric
and magnetic properties of these substances. In [7] it was
demonstrated that with the replacement of three-valent
ions La3+ by two-valent ions M2+ there appears ferromag-
netic ordering in the system, and at x ≥ 0.3 the dielectric
phase changes by the metallic one, and under it the satu-
rated magnetization and Curie temperature grow rapidly
with the increasing concentration of admixture ions M.
Zener [8] explained this connection between the appear-
ance of ferromagnetism and conductivity with the help of
the so called double exchange, which is organically con-
nected with the transfer of charge from one magnetic ion
to another. The point is that in mixed manganites the
substitution of three-valent ion La3+ by two-valent ion
M2+ causes the transfer of a corresponding part of ions
Mn3+ to the Mn4+ state. The newly appeared additional
electron (Zener electron) is in an itinerant state and three
d-electrons of ion Mn4+ form a localized magnetic mo-
ment. In this case, because of strong exchange interaction
between Zener electron and localized moment, the Zener
electron spin is always parallel (antiparallel) to the local-
ized spin. This circumstance is very essential for the es-
tablishment of long-range magnetic ordering in the system
because of the fact that the Zener electron transfers from
one magnetic ion to another without change of its spin
projection. Thus, the transfer of additional electrons from
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one manganese ion to another results in both appearance
of metallic conductivity in mixed manganites and estab-
lishment of ferromagnetic ordering.

Usually the double exchange mechanism is considered
in the scope of an s−f exchange model which was first
defined by Vonsovsky in 1946 [9]. Sometimes it is named
the Kondo lattice. This model assumes the existence of
localized magnetic moments in the system (f -subsystem)
and itinerant electrons (s-subsystem) which are connected
among themselves by an intra-atomic exchange interac-
tion. The Hamiltonian of this model looks like:

H = H0 +Hint, (1.1)

H0 =
∑
g,σ

εσa
†
gσagσ −

1

2
H
∑
g

Szg +
∑
g, g′,σ

tgg′a
†
gσag′σ,

(1.2)

Hint = −
1

2
I
∑
g

{
α
(
S+
g a
†
g↓ag↑ + S−g a

†
g↑ag↓

)
+ βSzg

(
a†g↑ag↑ − a

†
g↓ag↓

)}
, (1.3)

where εσ = −µ− σH/2, H is the external magnetic field,
Sg is the operator of localized spin at the site with num-
ber g, α and β are the coefficients of anisotropy of s−f
exchange interaction.

Double exchange is realized in those materials whose
s−f exchange parameter I is much more than the average
kinetic energy of itinerant electrons. This circumstance in-
troduces significant difficulties for constructing the double
exchange theory. The correct Hamiltonian of the double
exchange, defined by Kubo and Ohata in [3] and obtained
from (1.1) at α = β = 1 in the limit I → ∞, is so com-
plicated that we can use only very rough approximation
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methods for the investigation of double exchange in terms
of this Hamiltonian.

In connection with this appears a question about con-
struction and investigation of a simplified double exchange
model which would contain the basic peculiarities of the
phenomenon under consideration.

Recently, Furukawa [10–14] has studied some magnetic
and transport properties of perovskite-type manganese ox-
ides La1−xMx MnO3 on the basis of the isotropic s−f
model with the localized spins treated in the classical ap-
proximation (S →∞). Using this simplification Furukawa
has obtained the exact expression for the single-particle
Green’s function in infinite dimensions, and in the limit
of large I was able to explain the temperature behaviour
of magnetoresistance in the mentioned materials.

In the present parer we have considered the s−f model
with the quantum localized spins (S = 1/2) and in Sec-
tion 2 we shall introduce the simplified model of double
exchange which was studied at first in [6]. In Section 3 this
model will be solved exactly in the infinite-dimensional
space by the diagrammatic technique. Equations obtained
in this section defining single-particle Green’s function
will be solved in Section 4 for Bethe lattice with z → ∞
(z is the nearest neighbours number). In this section we
shall obtain too the equation for the magnetization of the
f -subsystem, and magnetic properties of Bethe lattice
with z → ∞ will be investigated. Transport properties
(a resistivity) of Bethe lattice will be studied in Section 5.
The general discussion of the obtained results will be given
in the last section.

2 The simplified model of double exchange

Consider the s−f model Hamiltonian (1.1) with S = 1/2.
The basic physical peculiarity of double exchange which
causes the ferromagnetic ordering of localized spins is the
parallelism (or antiparallelism) of itinerant electron spin
and localized spin at each site. We can conserve this pe-
culiarity in the double exchange Hamiltonian, if, deriving
it, we start from (1.3) where we put α = 0, β = 1. Thus,
we take that

Hint = −
1

2
I
∑
g

Szg
(
a†g↑ag↑ − a

†
g↓ag↓

)
(2.1)

where let it be that SzgS
z
g = 1.

Let us introduce Fermi type operators

c1gσ =
1

2
(1 + σSzg )agσ, c2gσ =

1

2
(1− σSzg )agσ , (2.2)

{cngσ, c
†
n′g′σ′} =

1

2
(1± σSzg )δnn′δgg′δσσ′ (2.3)

such that

[Hint, c1gσ] = −
1

2
I, [Hint, c2gσ] =

1

2
I. (2.4)

It is seen from equations (2.2–2.4) that the c-operators
describe complexes consisting of the localized spin and
the itinerant electron. And the itinerant electron spin is
parallel (antiparallel) to the localized spin in the com-
plex, described by the operator c1gσ(c2gσ). The energies
−I/2 and I/2 determine one-site levels of the correspond-
ing complexes.
As

c1gσ + c2gσ = agσ, (2.5)

the operator in (1.2) responsible for the transfer of itin-
erant electrons from site to site, in terms of c−operators
will look like ∑

n,n′

∑
g,g′,σ

tgg′c
†
ngσcn′g′σ. (2.6)

Thus, in the limit I → ∞ only the part of (2.6) which
is responsible for the transfer of itinerant electrons with
the spin parallel to localized spin, have the sense. As the
result for the double exchange Hamiltonian we have

Hd.ex = H0 +Hint, (2.7)

H0 = −
1

2
H
∑
g

Szg − µ
∑
gσ

c†1gσc1gσ, (2.8)

Hint =
∑
g,g′,σ

tgg′c
†
1gσc1g′σ. (2.9)

We shall omit the index “1” for c−operators in the future.
For calculation of magnetization of the f -subsystem we
suggest that the magnetic field H act on the f -subsystem
only. The summation in (2.9) is taken over the nearest
neighbours. Therefore

tgg′ = t
∑
ρ

δg+ρ,g′ , Rg+ρ = Rg +∆ρ, (2.10)

where ∆ρ is the radius-vector of the nearest neighbour
with number ρ.

In the infinite-dimensional space the process of scaling
of constant t sets with the help of relation [15,16]

t→
t∗

2
√
d
, t∗ = const (2.11)

where d is a space dimension. In Bethe lattice with infinite
number of the nearest neighbours case (z =∞) the scaling
sets also with the help of (2.11), where it should be put

d = z/2, so that t→ t∗/
√

2z.
Comparing (2.7) with the Hamiltonian of Kubo and

Ohata one can easily see that we entirely neglected pro-
cesses with the turnover of the spin. Moreover an itinerant
electron, described by our Hamiltonian, when transfered
from one magnetic site to another does not feel there is
on the latter an electron with opposite spin projection or
not. The first restriction is essential for the low tempera-
ture region where it is important to consider the spin-wave
excitations. So we shall pretend only to describe qualita-
tively the magnetic properties of ferromagnets with the
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Fig. 1. General diagram structure of the single-particle
Green’s function Gσ(g, g′; τ − τ ′).

double exchange. What about the second restriction, it is
not essential for materials with small concentration of itin-
erant electrons or holes. Magnetic semiconductors are such
materials, for example doped europium halcogenides [17].

It should be pointed out in connection with this that
the simplicity of Hamiltonian (2.7) may be found essen-
tial for obtaining exact results which are of major interest
in the theory of many particle systems. In particular, a
model with Hamiltonian (2.7) is resolved exactly in the
infinite-dimensional space, and obtained results prove to
be relatively simple.

3 Double exchange in the infinite-dimensional
space

In this section, exact equations will be given for a single-
particle Green’s function and magnetization of a localized
spins subsystem for a model with Hamiltonian (2.7) in
infinite dimensions. In this connection we shall use the di-
agram technique for c-operators that was developed in [6].
In virtue of anticommutation relations (2.3) this technique
is similar to diagram techniques for Hubbard X-operators
(see, for instance [18]), but it is considerably simpler in a
set of internal vertices.

The general diagram structure of the single-particle
Green’s function

Gσ(g, g′; τ − τ ′) = −〈Tτ c̃gσ(τ)c̃†g′σ(τ ′)〉 (3.1)

is shown in Figure 1, where transfer integral tgg′ associates
with the wavy line and “zero” Green’s function

G0
σ(g, g′; iωk)) =

δgg′

iωk + µ
= G0

σ(iωk)δgg′ (3.2)

is associated with the thin solid line.
It is seen from Figure 1 that in contrast to the usual

diagram technique for standard Fermi operators the ex-
pression for function (3.1) contains so-called “end” part
Rσ(g, g′; τ − τ ′), so that

Gσ(g, g′; iωk) =
∑
g1

Gσ(g, g1; iωk)Rσ(g1, g
′; iωk), (3.3)

where Gσ(g, g′; iωk), represented in Figure 1 by double
solid line, obeys the usual Dyson equation

Gσ(g, g′; iωk) = G0
σ(g, g′; iωk)

+
∑
g1,g2

G0
σ(g, g1; iωk)Ξσ(g1, g2; iωk)Gσg2, g

′; iωk), (3.4)

++ + + . . .

Fig. 2. Diagram series for Pσ(iωk).

where

Ξσ(g, g′; iωk) =
∑
g1

Rσ(g, g1; iωk)tg1g′ . (3.5)

We shall consider that

Rσ(g, g′; iωk) = Rσ(g, g; iωk)δgg′ ≡ Rσ(iωk)δgg′ , (3.6)

according to the general ideology of the theory of itiner-
ant electron systems in infinite-dimensional space [15,16].
Then the expression for the local single-particle Green’s
function gains the view

Gσ(g, g′; iωk) ≡ Gσ(iωk) = Rσ(iωk)Gσ(iωk), (3.7)

where

Gσ(iωk) ≡ Gσ(g, g; iωk) =

∞∫
−∞

dxρ0(x)

iωk + µ−Rσ(iωk)x

(3.8)

and

ρ0(ε) =
1

N

∑
k

δ(ε− ε(k)) (3.9)

is the density of single-particle states.
Let’s find the equation for “end” part Rσ(iωk). It’s

suitable for this purpose to use diagram expansion of the
other function

Pσ(g, g; iωk) ≡ Pσ(iωk) =

∞∫
−∞

dxxρ0(x)

iωk + µ−Rσ(iωk)x

(3.10)

which is connected with (3.8) by the relation

Gσ(iωk) = G0
σ(iωk)[1 + Pσ(iωk)Rσ(iωk)] (3.11)

because of peculiarities of the structure of diagram se-
ries for Gσ(iωk). It is seen from (3.11) that the function
Pσ(iωk) is of the zero’th order with the respect to param-
eter 1/d.

Diagrams, taking into account Pσ(iωk), are shown in
Figure 2 where unshaded ovals with the n bold points
inside correspond to zero-order cumulants:

i1 i2 in

≡ D0
σ(i1, i2, . . . , in)

=

(
1

2
σ

)n
∂n−1

∂yn−1
0

b(y0)δi1i2δi2i3 . . . δin−1in ,

(3.12)
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+ . . . =

Fig. 3. Rebuilt series for Pσ(iωk) and a diagram series for
Pσ(iωk).

b(y0) = 〈Szg 〉0 = tanh(y0), y0 =
1

2

H

T
· (3.13)

The series in Figure 2 is a sum of diagrams with exter-
nal vertices having equal site indices and with all possi-
ble cumulant bonds replaced with those ones taken in the
exact local approximation. These exact local cumulants
Dσ(g1, g2, . . . , gn) are presented in Figure 2 by shaded
ovals with n bold points inside.

The possibility of the exact calculation of the cumu-
lants in local approximation is caused by the fact that

[Hd.ex, S
z
g ] = 0

and that the exact average of the Tτ−product of oper-
ators (1 + σSzg ) taken in Heisenberg presentation does
not depend on Matsubara times. An analogous situation
takes place in the exactly solved infinite-dimensional space
Falicov-Kimball model [19].
Thus,

≡ Dσ(g) =
1

2
(1 + σm),

≡ Dσ(g1, g2) =
1

4
(1−m2)δg1g2 (3.14)

≡ Dσ(g1, g2, g3) = −
1

4
σm(1−m2)δg1g2δg2g3

and so on, where m is the magnetization of the local spins
subsystem. All these formulae are easily calculated with
the help of (3.12) and (3.13) with the change of b(y0) by
m. The exact equation for m will be given later.

To sum the series in Figure 2 let us rebuild it, so that
as a result we can obtain the series shown in Figure 3. For
this, taking into account the circumstance that the sum-
mation is taken over coordinates (lattice sites) of internal
vertices, we select in each diagram in Figure 2 the con-
tributions with internal vertices coinciding by coordinate
with external vertex in every possible way. It is necessary

Fig. 4. Diagrams of this type equal to zero at limit d→∞.

to use relations (3.14) when combining. Thus, in Figure 3
at the first, third, seventh and eighth diagrams of the se-
ries for Pσ(iωk) none of the internal vertices can coincide
with external vertex, and the magnitude Pσ(iωk), shown
in the same figure, is the sum of the diagrams of just such
a type.

After the mentioned rebuilding, graphs of the type
shown in Figure 4 turn out to be omitted in Figure 3.
But they are equal to zero in the limit d→∞ or z →∞,
because diagrams of such a type have at least one pair of
internal vertices that are connected by local cumulants.

The series for Pσ(iωk) in Figure 3 is summed easily in
terms of functions Pσ(iωk):

Pσ(iωk) = Pσ(iωk)
1− 1

2 (1− σm)Pσ(iωk)

1−Pσ(iωk)
· (3.15)

It is easy to see that function Pσ(g, g′; iωk) obeys the equa-
tion

Pσ(g, g′; iωk) = P 0
σ (g, g′; iωk)

+Rσ(iωk)
∑
g1

P 0
σ (g, g1; iωk)Pσ(g1, g

′; iωk) (3.16)

where

P 0
σ (g, g′; iωk) =

tgg′

iωk + µ
· (3.17)

The last equation can be obtained from Dyson equa-
tion (3.4) by way of multiplying it by tg′′g and summing
over g.

Equation (3.16) gives us an opportunity to get an equa-
tion for Pσ(iωk). Indeed, taking into account the method
of construction of this function, it is not difficult to show
that function Pσ(iωk) must obey equation

Pσ(g, g′; iωk) = P 0
σ (g, g′; iωk)

+Rσ(iωk)
∑
g1 6=g′

P 0
σ (g, g1; iωk)Pσ(g1, g

′; iωk), (3.18)

where in contrast with (3.16) the second term of the right
part has a restriction in summation over g1.

After Fourier transformation we can obtain from (3.18)

Pσ(iωk) =
Pσ(iωk)

1 +Rσ(iωk)Pσ(iωk)
· (3.19)

By substituting (3.19) into (3.15) we obtain the desired
equation for Rσ(iωk):

Rσ(iωk) =
1
2 (1 + σm)

1 + Pσ(iωk)[Rσ(iωk)− 1]
· (3.20)
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Fig. 5. Diagram series for the magnetization m.

If taking into account that Pσ(iωk) is connected with func-
tionGσ(iωk) by relation (3.11), so equations (3.8, 3.20) are
the system of equations for finding Rσ(iωk), Gσ(iωk) and
consequently Gσ(iωk).

For the calculation of magnetization of the localized
spins subsystem

m = 〈Szg 〉 =
〈S̃zg (τ)σ(β)〉0
〈σ(β)〉0

(3.21)

let us examine the series, shown in Figure 5. After re-
building this series, analogous in practice to the one done
for function Pσ(g, g; iωk) it is possible to obtain the series
shown in Figure 6. This series is a Taylor series and is
summed up easily. As a result we obtain

m = tanh(y0 + η), (3.22)

η =
∑
ωk

ln
1−P↑(iωk)

1−P↓(iωk)
· (3.23)

The magnitude η is an internal field (molecular field) with
which itinerant electrons are acting on localized spins sub-
system. Since η 6= 0 only when m 6= 0, (3.22) is a selfcon-
sistent equation for m.

4 Bethe lattice. Magnetic properties

For Bethe lattice with z → ∞ the system of equations
(3.8) and (3.20) can be solved and we can get an explicit
expression for Gσ(iωk). Indeed, taking into account that
the density of single-particle states ρ0(ε) has in this case
the form

ρ0(ε) =
4

πW

√
1−

(
2ε

W

)2

, −
1

2
W < ε <

1

2
W, (4.1)

where W = 2
√

2t∗, we easily take an integral in (3.8) and
for Gσ(iωk) we obtain

Gσ(iω)=2

{
iωk+µ+

√
(iωk+µ)2−

1

4
W 2R2

σ(iωk)

}−1

.

(4.2)

Substituting in (4.2) the expression for Rσ(iωk)

Rσ(iωk) =
Gσ(iωk)− 1

2 (1− σm)G0
σ(iωk)

Gσ(iωk)
(4.3)

1
2!+ + + . . .

= + + + . . .1
2

1
3

,

Fig. 6. Rebuilt series for the magnetization m.

obtained with the help of equations (3.11, 3.20), we easily
get the equation for Gσ(iωk) ≡ Gσ:

G2
σ − 2

[
8

W 2
(iωk + µ) +

1

2
(1− σm)G0

σ

]
Gσ

+
16

W 2
+

1

4
(1− σm)2(G0

σ)2 = 0. (4.4)

We have from it

Gσ(iωk)=
1

2
(1− σm)G0

σ(iωk)

+
8

W 2

{
iωk+µ−

√
(iωk+µ)2 −

1

8
W 2(1+σm)

}
. (4.5)

Now it is not hard already with the help of (4.3) to obtain
expressions for Gσ(iωk)

Gσ(iωk)=
8

W 2

{
iωk+µ−

√
(iωk+µ)2−

1

8
W 2(1+σm)

}
(4.6)

and for Pσ(iωk):

1−Pσ(iωk) =
1

16
W 2G0

σ(iωk)Gσ(iωk). (4.7)

So for Bethe lattice we have

n =
∑
σ

(1 + σm)
1

π

π∫
0

dt sin2 tf(aσ cos t) (4.8)

and

η =
1

π

π∫
0

dt ln

(
1 + exp [(µ− a↑ cos t)/T ]

1 + exp [(µ− a↓ cos t)/T ]

)
, (4.9)

where n is the itinerant electrons’ concentration,

aσ =
1

2
W

√
1

2
(1 + σm) (4.10)

is a halfwidth of the correlation conducting band and
f(z) is Fermi-Dirac function, f(z) = 1/[expβ(z − µ) + 1].
Equation (4.9) is an equation for chemical potential µ.
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Fig. 7. Temperature dependence of the magnetization m for
different electron concentration n. 1 − n = 0.5, 2 − n = 0.7,
3−n = 0.8, 4−n = 0.9, 5−n = 0.95, 6−n = 0.99. The dotted
line is the mean-field curve for Heisenberg ferromagnet.

In Figure 7 the temperature dependence of magneti-
zation for different n is shown. Comparing it with the
mean-field curve for magnetization of a Heisenberg ferro-
magnet

m = tanh

(
TK

T
m

)
· (4.11)

We see that at small values of 1 − n the magnetization
values are less then they should be at given T/TK from
(4.11), and at n = 0.5 the magnetization curve is placed
above the mean-field curve on the plot.

It should be noticed in connection with this that the
temperature behaviour of the magnetization at small val-
ues of 1−n with two flex points essentially differs from the
behaviour of the Heisenberg mean-field curve. Analogous
behaviour can be found in a Heisenberg ferromagnet with
a small concentration of paramagnetic impurities. There-
fore we can conclude that in a magnetic sense the double
exchange system at small values of 1 − n presents itself
as the Heisenberg ferromagnet with non-regular localized
spins.

Indeed, in the I =∞ case the s-electron spin so hardly
is bound with the localized spin on the same site that the
complex consisting of the localized spin and the itinerant
electron spin is the non-regular spin. Actually, introduced
in Section 2, the c-operators (c†-operators) are the opera-
tors of annihilation (creation) of the non-regular spins.

It should be noted, that the mentioned analogy be-
tween double exchange system at small values of 1 − n
and Heisenberg ferromagnet with paramagnetic impuri-
ties was first discovered in old papers of Nagaev (see, for
example, [20]).

The deviation of magnetic behavior from Heisenberg
ferromagnets also appears in the temperature dependence
of magnetic susceptibility which can be obtained from

1/
χ

Fig. 8. Temperature dependence of inverse susceptibility for
different electron concentration n. 1 − n = 0.5, 2 − n = 0.7,
3− n = 0.8, 4− n = 0.9, 5− n = 0.95, 6− n = 0.99.

(3.22) as a derivative of m with respect to H:

χ =
1
2

T − 1
8W

2Π
, (4.12)

where

Π = −
1

πa

a∫
−a

dz
√

1− (z/a)2
df(z)

dz
, (4.13)

and a = W/2
√

2. Indeed, the analysis of the temperature
behaviour of the inverse susceptibility at various n exhibits
that at T/a� 1 the susceptibility obeys Curie law for all
n. At T/a < 1 the curvature (see Fig. 8, where 1/χ and
T are expressed in units of W/2) of the temperature de-
pendence of χ−1 is opposite in sign to the one observed in
Heisenberg ferromagnets. As a result the inverse suscep-
tibility crosses temperature axes at finite temperature. It
seems that here the susceptibility critical exponent γ < 1,
while in the Heisenberg ferromagnet γ ≥ 1 in any approx-
imation.

The marked anomaly in the temperature behaviour
of the susceptibility was pointed out long ago in An-
derson and Hasegawa’s work [1] where double exchange
was considered in the scope of a two atom system. High-
temperature expansion of susceptibility in [1] does not in-
clude the term proportional to 1/T , which is what served
the authors of the work [1] as the reason for conclud-
ing that susceptibility obeys Curie law at high temper-
atures, and that it has inverse curvature compared with
the Heisenberg one at low temperatures. Our exact calcu-
lation with Hamiltonian (2.7) in the infinite-dimensional
space confirms this qualitative conclusion.

It is possible to find from (4.12) the dependence of
Curie temperature TK on electron concentration n. This
dependence is shown in Figure 9, where TK is expressed
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Fig. 9. Electron concentration dependence of the magnetic
transition temperature TK . The full line: TK from the singu-
larities of the susceptibility (4.12), the dashed line line: TK
from the approximate formula (4.14), the dotted line: TK in
the Hubbard-type approximation.

in units of W/2. Approximately, the formula for TK looks
like the following

TK = α
a

π

√
1− (εF /a)2, (4.14)

where Fermi energy εF is defined from (4.8) at T = 0, and
α = 0.856 is the fitted coefficient.

Let us note that the usage of the Hubbard-I type ap-
proximation (for Hamiltonian (2.7)) gives us the next ex-
pression for TK [6]

TK = 0.5ε2
Fρ0(εF ), (4.15)

which essentially differs from (4.14) (see Fig. 9), because
at n = 0.5 TK from (4.14) has a maximum and TK from
(4.15) is zero. Thus, the results of [6] remain true only
when 1− n� 1 and n� 1.

Concluding this part we give formulae for the energy
of the ferromagnetic state at T = 0 (m = 1)

EF = −
1

3
W

1

π

[
1−

(
2εF
W

)2]3/2

(4.16)

and the paramagnetic state (m = 0)

EP = −
1

3
W

1

π
√

2

[
1−

(
εF

a

)2]3/2

. (4.17)

It follows from equation (4.16, 4.17) that the ferromag-
netic state is energetically more advantageous than the
paramagnetic one at electron concentrations belonging to
the interval 0 < n < 1. When n = 0 and n = 1, EF = EP .

5 Bethe lattice. Transport properties

As mentioned in the introduction strong mutual influence
of magnetic and transport properties is displayed most

clearly in the temperature dependence of the resistivity.
The existing experimental data for the manganese oxides
show the strong dependence of the resistivity on temper-
ature immediately below the magnetic critical point TK ,
and on the magnetic field [10] (for old papers on this sub-
ject see in [17]).

Recently, the authors of a series of papers [10–12,14]
have pointed out that the temperature-dependent trans-
port properties can be scaled to a universal curve as a
function of the magnetization. This universal formula for
the resistivity was obtained by Furukawa in the frame
of the double exchange model with the classical localized
spins (S →∞). For small values of magnetization m and
the Lorentzian density of states of itinerant electrons this
formula has the form [12]

ρ(0)− ρ(m)

ρ(0)
= Cm2, (5.1)

where

C =
8− cos(2π(1− n))

2− cos(2π(1− n))
(5.2)

is the coefficient depending on electron concentration, but
it does not depend on temperature.

However, it should be noted that from a theoretical
point of view magnetization can not serve as fundamental
quantity. Indeed, in a wide temperature region the be-
haviour of the magnetization can depend on different pa-
rameters of theory. In particular, in our double exchange
model the temperature behaviour of the magnetization
at n = 0.5 essentially differs from that at n = 0.99 (see
Fig. 7).

In this section we shall calculate the resistivity of the
double exchange Bethe lattice as a function of temperature
directly. Unfortunately, this calculation will be made by
numerical methods.

In infinite dimensions we have the following formula
for conductivity [12,21–23]

σdc = σ0W
2

∞∫
−∞

dερ0(ε)

×
∑
σ

∞∫
−∞

dω

(
−
∂f(ω)

∂ω

)
A2
σ(ε, ω − µ), (5.3)

where the constant σ0 gives the unit of conductivity, and

Aσ(ε, ω) = −
1

π
ImGσ(ε, ω + iδ). (5.4)

The chemical potential µ in (5.3) is defined from the for-
mula (4.8) of Section 4.

In order to obtain the expression for the spectral func-
tion Aσ(ε, ω) let us present the one-particle Green’s func-
tion in the Dyson form

Gσ(ε, ω) =
1

ω + µ− ε−Σσ(ω)
, (5.5)
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ρ(
Τ)

/ρ

Fig. 10. Temperature dependence of resistivity, 1 − n = 0.5,
2− n = 0.7, 3− n = 0.8, 4− n = 0.9.

where

Σσ(ω) = (ω + µ)
Rσ(ω)− 1

Rσ(ω)
· (5.6)

Taking into account the formula (4.3), we have

Σσ(ω) = −
1

2

(
1− σm

1 + σm

)

×

{
ω + µ+

√
(ω + µ)2 −

1

8
W 2(1 + σm)

}
(5.7)

and

ImΣσ(ω + iδ) = −
1

2

(
1− σm

1 + σm

)

×

√
1

8
W 2(1 + σm)− (ω + µ)2 (5.8)

for

−
1

2
W

√
1

2
(1+σm)<ω+µ<

1

2
W

√
1

2
(1+σm). (5.9)

Otherwise ImΣσ(ω + iδ) = 0.
Let us turn one’s attention to the multiplier

1− σm

1 + σm

in the expression (5.8). Firstly, the same multiplier is
contained in the analogous expression for the self-energy
part in [12]. Secondly, this multiplier provides exactly the
decrease of resistivity when the magnetization m is in-
creased. Indeed, in the limit m→ 1 (or T → 0) we have

A↑(ε, ω) = δ(ω + µ− ε), A↓(ε, ω) = 0 (5.10)

ρ(
 Τ

 )/
ρ(

 Τ
  )

Fig. 11. Temperature dependence of relative resistivity im-
mediately below the magnetic transition temperature TK .
1− n = 0.5, 2− n = 0.7, 3− n = 0.8, 4− n = 0.9.

and the itinerant electron subsystem presents itself as a
free electron gas.

The temperature-dependent resistivity ρ(T ) is shown
in Figure 10, where ρ0 = 1/σ0 and T are expressed in units
of W/2. For the numerical calculation of the resistivity
from the formula (5.3), we have used the results of the
calculations of the temperature-dependent magnetization
(see Fig. 7).

One can see from Figure 10 that the resistivity reveals
a sharp drop as temperature is decreased (or magnetiza-
tion is increased) immediately below TK . The breaking of
the resistivity curve occurs at T = TK for each electron
concentration n. In agreement with experimental data of
La1−xSrx MnO3 (see Fig. 1 in [10]), the value of resistiv-
ity at T = TK , ρ(TK), grows when the hole concentration
x = 1− n is decreased.

The calculations for n = 0.95 and n = 0.99 show that
the resistivity curve has a cusp at T = TK and immedi-
ately above TK the resistivity decreased as temperature is
increased. These curves are not shown in Figure 10.

In Figure 11 we show dependence of the relative re-
sistivity ρ(T )/ρ(TK) on relative temperature τ = (TK −
T )/TK immediately below TK for different n. Using these
resistivity curves we have constructed the formula, defin-
ing the behaviour of the relative resistivity as a function
of τ . This formula has the form

ρ(TK)− ρ(T )

ρ(TK)
= aτν(1 + bτ + cτ2), (5.11)

where τ < 1.
The coefficients a, b, c and the exponent ν for different

n are given in Table 1.
Actually, the exponent ν defines the critical behaviour

of resistivity below the magnetic transition tempera-
ture TK . If we suggest that magnetization m ∼

√
τ at

τ � 1, then our dependence of ρ(T )/ρ(TK) on m will



B.M. Letfulov: A theory of double exchange in infinite dimensions 203

Table 1.

n ν a b c

0.5 0.9170 14.7018 −8.3062 29.5002
0.7 0.9289 13.8696 −8.0842 28.5324
0.8 0.9309 12.4146 −7.7448 26.9634
0.9 0.9348 11.1775 −7.6366 26.6344

differ slightly from Furukawa’s dependence (5.1). We want
to remember in connection with this that we have taken
into account the temperature dependence of resistivity
from the formula (5.3) and that of the chemical poten-
tial µ from the formula (4.8) completely. As a result we
have the mentioned difference between (5.1, 5.11).

6 Conclusion

In this paper the simplified double exchange model with
Hamiltonian (2.7) was investigated and the exact solution
in infinite-dimensional space was obtained for it. Equa-
tions (3.8, 3.20) were solved for Bethe lattice with z →∞
and with the help of (3.22, 3.23) the magnetic properties
of a localized spins subsystem were studied. Ferromagnetic
alignment was found to be more advantageous at any fi-
nite concentration of charge carriers in this model.

The use of the above-mentioned equations for the low-
dimensional space gives us the true mean-field approxi-
mation. The internal Weiss molecular field, exerted on a
localized spin, is determined by the properties of the itin-
erant electrons subsystem. We can determine its force and
dependence on concentration n by the magnitude of TK .
For Bethe lattice with z →∞, TK is given by the formula
(4.14).

Although the double exchange model presented here
is essentially simplier than the model in [3], the author
hopes that it considers the main special features of this
phenomenon. It is important that this model gives us a
opportunity to go significantly farther in the theoretical

investigation of the systems with the double exchange
what can be found to be sufficient for the general compre-
hension of the theory of the systems of many interacting
particles.

This work is supported by Russian Fond of Fundamental Re-
search, project 96–02–16000.
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